Ziyaretçi
Olasılık hangi alanlarda kullanılır?
Olasılık Kullanım Alanları
MsXLabs.org
Sponsorlu Bağlantılar
Olasılık bir şeyin olmasının veya olmamasının matematiksel değeri veya olabilirlik yüzdesi, değeridir. Olasılık kuramı istatistik, matematik, bilim ve felsefe alanlarında mümkün olayların olabilirliği ve karmaşık sistemlerin altında yatan mekanik işlevler hakkında sonuçlar ortaya atmak için çok geniş bir şekilde kullanılmaktadır.
Aristo'un eserlerinin çevirilerinde olasılık sözcüğü, bir gerçeğin rastgelirliliğinin nicelikleştirilmesini ifade etmemektedir, ama bir fikrin ne kadarının genel olarak kabul edildiği ile ilgilidir. Orta Çağ ve sonra Rönesans Çağı'nda birbirini takip eden açıklamalar ve Aristo'nun eserlerinin çevirilerinde yapılan hatalar ile anlam kaymaları ortaya çıkıp bu sözcük bir fikirin olabilirliğinin tasarlanması anlamına gelmeye başlamıştır. XVI. Yüzyıl ve XVII. Yüzyıl'da etikle ilgili din biliminde bulunan olasıcılık bu anlamda ön plana gelmiştir. XVII. Yüzyıl'ın ikinci yarısında olasılık konusunun Blaise Pascal ve Pierre de Fermat tarafından matematiksel olarak incelenmeye başlanması ile olasılık sözcüğü modern anlamına doğru bir yol almıştır. Matematiksel modern olasılık kuramının geliştirilmesi XIX. Yüzyıl'da başlamıştır.
Günlük Hayatta Uygulama Örnekleri
Şans oyunları veya kumar oyunları olasılık kavramlarının uygulanması için en doğal ortam ve süreçler sağlarlar. Bilinmektedir ki olasılık kavramının gelişmesinde ilk teorik açıklamalar şans oyunlarını açıklamak nedeniyle ortaya çıkartılmıştır.
Ancak modern zamanlarda, birçok pratik ve teorik alanda, olasılık kavramı ve bu kavrama bağlı olarak geliştirilen teoriler ve uygulamalar şans oyunlarının yanında çok daha geniş alanlarda açıklama ve uygulama imkânları sağlamaktadır. Burada şu olasılık uygulama alanlarınin adları kısaca anılabilir:
İstatistik:
Çok geniş bir bilim dalı olmakla beraber, ileri derece de özellikle ileri sayisal veriler analizleri ve çıkarımsal analizlerde olasılık kavramları temel rol oynamaktadır.
Oyun teorisi:
Iktisat incelemelerinde oyun teorisi ozellikle mikro-iktisat alanında çok önem kazanmıştır ve olasılık kavramları bu analizlere temel sağlamaktadır.
Karar verme teorisi:
Belirsizlik ortamlarında karar verme analizi yapılmasında ve bu rizikolu inceleme çevresinde karar verme yöntemlerinin ortaya çıkartılmasında olasılık kavramları çok önemli olup özellikle Bayes teoremi uygulamaları ve Bayes-tipi istatistiksel çıkartımsal analizler bu bilimsel alanda temel sağlamaktadır.
Son düzenleyen Safi; 8 Şubat 2018 17:28