Arama

Konikler - Konik Kesitler

Bu Konuya Puan Verin:
Güncelleme: 29 Ocak 2010 Gösterim: 8.808 Cevap: 1
Misafir - avatarı
Misafir
Ziyaretçi
23 Aralık 2007       Mesaj #1
Misafir - avatarı
Ziyaretçi
Konikler
Vikipedi, özgür ansiklopedi

Sponsorlu Bağlantılar
Ad:  487px-Conic_sections.png
Gösterim: 598
Boyut:  108.3 KB
Konik kesitler

Konik kesit, eliptik veya dairesel bir çift taraflı koninin, düzlemle kesitinden meydana gelen eğriler. Bunlar; daire, elips, parabol ve hiperboldür.

Elips
Aralarındaki mesafe 2a olan ve odak noktaları denen iki noktaya uzaklıkları toplamı, sabit 2a'ya eşit olan noktaların geometrik yeridir. Elips oval bir eğri olup, iki dik simetri ekseni mevcuttur. Bunlar, bir M noktasında kesişirler. Bu eksenler koordinat takımı olarak alınırsa, elipsin denklemi; b² = a² - c² olmak üzere x²/a² + y²/b² = 1 şeklinde belirir. Eğer c=0 olursa, odaklar birbiriyle çakışır ve elips yarıçapı a=b eşit olan bir çembere dönüşür.

Hiperbol
Hiperbol, belirli iki noktaya olan mesafelerinin farkı, sabit 2a'ya eşit olan noktaların geometrik yeridir. Bu sabit noktalar, hiperbolün odak noktaları olarak isimlendirilir ve ara mesafesi 2c olarak gösterilir. Hiperbolün iki ayrı kolu mevcut olup, birbirine dik iki simetri ekseni mevcuttur. Bu eksenlere göre hiperbolün denklemi, b² = a² - c² olmak üzere x² / a² - y² / b² = 1 olarak yazılır. y=± bx/a doğruları hiperbolün asimptotlarıdır.

Parabol
Parabol, belirli bir noktaya ve bir doğruya uzaklıkları eşit olan noktaların geometrik yeridir. Bu belirli noktaya parabolün odak noktası denir. Bu noktadan doğruya çizilen dik doğru, parabolün simetri eksenini teşkil eder. Parabolün bu eksene ve tepe noktasından geçen dik eksene göre denklemi y² = 2px olarak belirir.
Koniklerin genel denklemi: Dik x ve y koordinat ekseninde ikinci dereceden genel bir denklem;
Ax² + 2Bxy + Cy² + 2Dx + 2Ey + F = 0 olarak belirir. Eğer A,C ve F katsayılarının hepsi birden sıfır değilse bu bir konik kesitini gösterir. Ancak bu halde konik kesiti yanında birbirini kesen iki doğru veya iki paralel doğru, üst üste bulunan iki doğruyu da kapsar. Bunlar b² x² - a² y² = 0 (x+a)= 0 veya x² = 0 olabilir. Ayrıca koniğin, x² / a² + y² / b² = -1 gibi sanal da (izafi de) olabilir ve x ve y koordinat ekseninde gösterilmez. İki konik en fazla dört noktada kesişir.
İkinci dereceden işlevlerin grafikleri de birer paraboldür. Genel olarak f(x) = ax² + bx + c şeklinde ifade edilir. Tepe noktası T(r,k) hesaplanırken bu noktanın kordinatları, r= -b/2a , k=f(r) olarak bulunur.
Parabol, bir düzlemde alınan sabit bir d doğrusu ile sabit bir F noktasından eşit uzaklıktaki noktaların geometrik yeri. Sabit F noktasına parabolün odağı, d doğrusuna da parabolün doğrultmanı denir. AF doğrusuna parabol ekseni denir. Parabol, bu eksene göre simetrik iki koldan ibarettir. Parabole ait herhangi iki noktayı birleştiren doğru parçasına kiriş; odakta eksene dik olan (MN) kirişinin yarısına parametre denir ve p ile gösterilir. Parabolün, ekseni kestiği noktaya (A noktasına) köşe adı verilir. Parabol üzerindeki her noktanın odak noktasına olan uzaklığı, doğrultmana olan uzaklığına eşittir. Yani |MF|= |ML|'dir. Parabolün simetri ekseni X ekseni ve A köşesi (0,0) noktası (yani başlangıç noktası) alınırsa parabolün standart denklemi y² = 2px olur (p parabolün parametresidir). Odağın koordinatları F(p/2, 0) olur. Doğrultman denklemi X = p/2 şeklinde olur. Eğer parabol eksenini OX ekseni değil de OY ekseni olarak alınırsa ve köşesi de yine O(0,0) noktası olursa Parabolün denklemi x² = 2py olur. Doğrultman denklemi y = -p/2'dir.

Tarihi Gelişimi
İlk koni ile ilgilenen M.Ö. 350 civarında Menaechmus olmuştur. Bu konuda ilk kitap M.Ö. 320'de Euclid tarafından yazıldığı tahmin edilmektedir. Günümüze kadar gelen kitap M.Ö. 225'ten, Apollonius'un Konikler kitabıdır. Arşimet (M.Ö 287-212), konikleri tanımaktaydı ve çalışmalarında bunları kullanmıştır. Abbasi alimlerinden Beni Musa'nın konikler üzerine yazdığı Kitab-ül-Mahrutat kitabı meşhurdur. Ebu Sa'id-el-Siczi ise koni kesitlerini incelemiştir.
Konik kelimesi, Apollonius tarafından verilmiştir. y² = 2px + ax² ifadesinde eğer a<0 ise hiperbol a>0 ise elips ve a=0 ise parabol ortaya çıkar.
Rönesansta, özellikle Kepler, gezegenlerin eliptik yörünge üzerindeki hareketini keşfettikten sonra, koniklere olan ilgi tekrar canlanmıştır. Descartes'in 1637'de analitik geometriyi keşfetmesinden sonra, cebirsel metodlar eski geometrik metodların yerini almıştır. Günümüzde konikler, ders kitaplarında, daha çok analitik geometrinin konusu olarak anlatılmaktadır.

asla_asla_deme - avatarı
asla_asla_deme
VIP Never Say Never Agaın
29 Ocak 2010       Mesaj #2
asla_asla_deme - avatarı
VIP Never Say Never Agaın
KONİ Alm. Kegel, Konus (m), Fr. Cone (m), İng. Cone. Matematikte, bir düzlem içindeki dâirenin her noktasını, düzlem dışındaki bir noktaya birleştiren doğru parçalarının meydana getirdiği geometrik şekil.

Sponsorlu Bağlantılar
Dik üçgenin bir dik kenarı etrâfında döndürülmesiyle elde edilen koniye, Dik Koni veya Dönel Koni denir. Koniler, tabanlarına göre dâiresel koni, eliptik koni gibi isim alır. Dâiresel bir dik koninin taban merkezini, tepe noktasına birleştiren doğru parçasına, bu koninin ekseni veya yüksekliği denir.


Taban çevresinin herhangi bir noktasını tepeye birleştiren doğru parçasına koninin ana doğrusu veya apotemi adı verilir. Taban çevresinin her noktasını tepeye birleştiren doğru parçalarının meydana getirdiği yüzey, koninin yanal yüzeyi adını alır. Yanal yüzeyin alanı, taban çevresi ile apoteminin çarpımının yarısına eşittir. Taban yarıçapının uzunluğu r, apotemi uzunluğu a ise yanal yüzey alanı= πra olur.

Bir dâiresel dik koninin hacmi de, taban alanı ile yüksekliğin çarpımının üçte biri alınarak elde edilir: (V= 1/3 πr2.h) Bir dönel koninin düzlemlerle arakesitine, konikler adı verilir. Herhangi bir koni, tabana paralel bir düzlemle kesilirse, düzlemle taban arasında kalan kısma kesik koni denir.

Şeytan Yaşamak İçin Her Şeyi Yapar....

Benzer Konular

20 Mayıs 2008 / Gabriella Taslak Konular
19 Mayıs 2011 / Gabriella Mustafa Kemal ATATÜRK