
Ziyaretçi
karekökü ve üçgenlerin tarihçesini aynı zamanda kimin bulduğunu uzunca yazabilirmisiniz
karekök;
Pisagor Döneminde Pisagor Tarikatı Varmış . Bunlar Doğadaki Herşeyin Bir Rasyonel Sayıyla İfade Edilebiliceklerini İddaa Ediyorlarmış . Birgün Pisagor Pisagor Teoremini Bulmuş . A2 + C2 = B2 Demiş . Pisagorun Bir Öğrencisi Gelmiş Demiş ki ;
Senin Bu Teoremin Doğru ama Ben Sana Bir Üçgen Çiziyim . Bir Kenarının Uzunluğu 1Cm Diğer Kenar Uzunluğuda 1cm Olsun Demiş . Sonunada Eklemiş "Bana Hipotenüsü Bul ." X2=2 gibi Bir Denklem Olmuş . Fakat Doğada Hiçbir Rasyonel Sayının Karesi 2 Değilmiş . Bunun Üzerinede Kareköklü Sayılar Ortaya Çıkmış Diye Biliyorum
alıntı
aşağıdada istediğiniz gibi uzun olarak geometri tarihçesi.. inceleyiniz..
Geometrinin Tarihçesi Bilim tarihi içinde matematiksel gelişmelerin yeri ve önemi çok büyüktür. Matematiğin orjinini oluşturan iki temel alan vardır: Aritmetik ve Geometri.
Geometri uzayın ve uzayda tasarlanabilen biçimlerin, kurallara uyularak incelenmesini konu alan matematik dalıdır. Etimolojik olarak "geometri" kelimesi, dünya'nın ölçümü anlamına gelir. Geometri çok eski çağlardan beri vardır. Ancak geometri ismi, bu ilmin ilk sistematik hale gelmeye başladığı Eski Yunanlılardan bu yana kullanılmaya başlanmıştır. Bu bilim dalı başlangıçta, düzlemdeki ve uzaydaki şekillerin incelenmesini konu edindi. Söz konusu şekiller somut nesnelerden türemelerine rağmen, geometri, deneysel yöntemlerin kullanımını çok erken terk etti. Bunun tersine, şekilleri gerçek nesnelerin ideal biçimine indirgemeye çalıştı (parçaları olmayan nokta; bütün noktalarında kendine benzeyen doğru). Öte yandan geometri, gözlemi de ölçmeyi de kullanmayan postulatlar (koyutlar) ve sonuçlarla işleyen bir kanıtlama biçimine başvurdu.
Yüzölçümü hesaplamak istenen bir tarlanın çizgisel taslağından tutun da gök cisimlerinin yörüngelerinin saptanmasına, haritalara, planlara, coğrafyada kullanılan ölçeklere, makine yapımına, mimarlığa varıncaya kadar, geometri bilgisinin mutlaka gerekli olduğu alan pek çok ve geniştir. Bugünde kullandığımız mühendis kelimesi Arapça’da “hendese bilen” anlamına gelir ki hendese geometrinin bir diğer ismidir.
Geometrinin “yer ölçme” (geo: yer, metr: ölçüm) anlamı aslında tarihin derinliklerinde geometrinin taşıdığı anlamdır. İnsanoğlu toprak ile karşılaştığında ondan yararlanmaya, ona sahip olmaya başlamıştır. İlk medeniyetin beşiği sayılan Nil Vadisi’nde Temmuz ve Ağustos aylarında Nil nehri taşar ve en dar yeri 7 km, en geniş yeri 40 km olan yatağını alüvyonlu topraklarla örter. Böylece arazi üzerindeki hudutları bir bakıma siler. Ardından araziyi işlemek isteyenler arasında “burası senindi, burası benimdi” kavgaları olurdu. Bu probleme kalıcı bir çözüm bulmak hayli zor ve zaman alıcı olmuştur. Nihayet gökyüzündeki yıldızların oluşturduğu üçgen, dörtgen, ... gibi şekiller arazi üzerine çizildi. Ve bunların sahipleri tespit edilerek karışıklıklara son verildi.. Böylece ilk geometri konuları da ele alınmış oldu. Bu gayretler devam ettikçe geometri gelişmiştir.
İlk geometrilerin tümü, kendi doğası nedeniyle sezgiseldir. Bunlar daha çok ilk insanların çevresinde görülen doğal şekillerdir. Bu geometriler daha çok görsel türdedir. İkinci olarak şekillerin ölçülmesi aşaması gelir.
Eski Mısır'da görülen geometri bilgileri, yüzey ve hacim hesapları olarak karşımıza çıkmaktadır. Mısırlılar, kare ve dikdörtgen alanlarını, doğru bir şekilde hesaplayabiliyorlardı. Düzgün olmayan bir yüzeyin planını ise, dörtgenleştirme yoluyla elde ediyorlardı. Üçgen alanı bilgisinden hareket ederek de, yamuğun alanını elde ediyorlardı.
Dörtgenlerin ve üçgenlerin ölçülmesi ilk kez Mısır’da Ahmes’in (İ.Ö.1550) papirüsünde görülür. Bu papirüs İ.Ö.1580 tarihinden önce yazılmıştır. b tabanlı ve h yükseklikli ikiz kenar üçgenin alanının bh/2 olduğu verilmiştir. Yine aynı papirüste d çaplı bir dairenin alanının (d-d/9)2 yazımına eşdeğer olduğu yazılmıştır. Bu yazımlara göre pi sayısı yaklaşık olarak 3.1605 dolaylarındadır. Bu formül geometrik şekilden yaklaşık olarak elde edilmiştir.
Mısırlılar'ın; üç boyutlu cisimlerden; silindir, koni, piramit, dikdörtgen prizma ve kesik prizma hacimlerini de bildikleri anlaşılmaktadır. Kesik piramidin hacminin hesaplanması, zamanın geometrisi için son derece önem taşımaktadır. Ord.Prof.Dr.Aydın Sayılı; Mısırlılarda ve Mezopotamyalılarda Matematik, Astronomi ve Tıp adlı eserinde konu ile ilgili geniş bilgi verdikten sonra şunları yazar: "Mısırlılar'ın, aritmetiklerinde olduğu gibi geometri problemlerinin çözümünde de, tamamıyla somut özel hallerin ele alınmasından ileri gidilmiyor. Karşılaşılan bütün örneklerde ortak bir vasıf Mısır geometrisinde genel formül kavramının mevcut olmayışıdır. Zihinde bir nevi genel formül fikri ve belli genellemeler vardı. Açı geometrisi mevcut değildi. Bunun yanında Doğru geometrisi gelişmiş durumdaydı." Burada doğru geometrisi ile ölçü için; sadece doğruları kullanan ve açı kavramına başvurmayan bir geometri kastedilmektedir. Alan ve hacim hesapları, doğruların yardımıyla yapılmaktadır. En, boy, taban, dikme, köşegen, çap ve çevre, hem ölçülebilen, hem de ölçüde aracı rolünü kullanıyordu. Bugünkü ifadeyle; 45 derecenin, bazı trigonometrik özelliklerini de bildikleri anlaşılmaktadır.
Burada akla şöyle bir soru gelmektedir; Mısırlılar, ilkel geometri bilgisi diyebileceğimiz, ama bugünkü geometrinin temel bilgilerini, hangi ihtiyaçları sonucu ortaya koymuşlardır?
Başta da belirttiğimiz gibi Nil Nehrinin belli aralıklarla taşması sonucu silinen arazi hudutlarının tekrar belirlenmesi amacıyla bir ihtiyaç olarak doğmuştur. Mısır mezar lahitlerinin, piramitlerin, tahta işlerinin estetik bakımdan üstünlük sağlaması, hem çalışmaların ihtiyacından doğmuş ve hem de zaman için var olan ölçü tekniği ile basit de olsa bu ölçülerin hesaplama tekniğinin kısmen ileri derecede olması geometrinin temellerinin oluşmasında katkı sağlamıştır.
Zamanımıza kadar ulaşmış tabletlerin değerlendirilmesi sonucu Mezopotamya matematiği hakkında bilgiler elde edilmektedir. Bu tabletler bilim tarihinde; Susa, Vatikan 8512, Tell Halman, Plimpor 322, British Museum 85114 ve Elam tabletleri şeklinde adlandırılmıştır. Bugün, Thales Teoremi olarak bilinen teoremin varlığı, Thales'ten (batı felsefesinin ilk filozofu) 1700 yıl ve Öklid'ten 2000 yıl kadar önce biliniyordu. Aydın Sayılı; adı geçen eserinde, Susa tabletlerine dayanarak Thales Teoremlerinin nasıl ortaya çıktığını belirtir. Bu teoremlerin, Öklid tarafından bilindiğini ve Elementler adlı eserinin, 6. ve 8. teoremler olarak açıklandığını yazar. Kaynaklardan şu sonucu çıkarmaktayız. Bugünkü klasik geometri veya Eski Yunan geometrisinin temsilcileri olarak görülen, Thales, Pisagor ve Öklid'e dayalı geometri bilgilerinin temelinde Mezopotamya matematiği bulunmaktadır. Başka bir ifade ile Mezopotamyalılar tarafından, bu geometri bilgileri, eski Yunan matematikçilerinden, çok önceki yıllarda bilinmekte olduğu anlaşılmaktadır.
Thales’e atfolunan bilgiler, aslında, Mezopotamya geometrisine dayanmaktadır. O bilgiler şunlardır:
1. Thales Teoremi:
a. Benzer dik üçgenlerde (veya iki üçgenin açıları eşitse) kenar uzunlukları oranları eşittir (Öklid, Geometrinin Unsurları, VI, 4)
b. Bir dik üçgende, dik açının tepe noktasından hipotenüse indirilen dikmenin iki tarafında kalan iki üçgen birbirine ve asıl üçgene benzer üçgenlerdir (Öklid, Geometrinin Unsurları, VI, 8).
2. Çapı gören çevre açısı bir dik açıdır. Çap, çemberi iki eşit kısma böler.
3. Bir ikizkenar üçgende, taban açılarının eğimleri eşittir.
4. Thales, tıpkı Mezopotamya’da olduğu gibi, açı yerine, ancak dik açıya dayanarak, eğimleri göz önünde bulundurmuştur; ve, ‘eşit açılar’a ‘benzer açılar’ adını vermiştir; dairede ise çapı gören dik açıyı söz konusu etmiştir; ikizkenar üçgende ‘taban açılarının eşitliği’ yerine ‘taban açılarının eğimlerinin eşitliğini düşünmüştür. Ters açıların eşit olduğunu fark etmiştir.
5. Birer kenarı ile ikişer açıları eşit olan üçgenler eşittir.
Kaynaklar geometri konusunda şu bilgileri de vermektedir. Çemberi de, ilk önce 360 dereceye Mezopotamyalılar'ın ayırdığı, bu geleneğin Mezopotamya menşeli olup Yunanlılara, Mezopotamyalılar'dan geçtiği bilinmektedir. Kesik piramidin hacminin ortaya konması ve ispatlanması geometride önemli bir yer tutar. Mezopotamyalılar, kesik piramit hacmine ek olarak, piramit hacim formülünü de bilmiş olmaları gerekiyor.
Babilliler, bugün Eski Yunandan beri Pisagor Bağıntısı diye adlandırılan teoremi biliyorlardı. M.Ö. 18. yüzyıla (Birinci Babil İmparatorluğu Devri) ait tablette, bugün Pisagor Bağıntısı dediğimiz : c2 = a2 + b2 formülüyle bağlı; a, b, c gibi sayılar üç sütun üzerine sıralanmış; birinci sütuna c ikinci sütuna a, üçüncü sütuna da, b gibi sayılar kaydedilmiş, c lere karşılık olan sayılar belirtilmemiş. Pisagor'dan on iki yüzyıl önce, bu gibi sayılara ait özellikleri bilen Mezopotamyalılar'ın soyut aritmetik problemlerine dayanarak, sayılar teorisi esasları üzerinde zihni bir merak aşamasına varmış oldukları anlaşılmaktadır.
Mezopotamya geometrisi hakkında bir fikir vermek üzere, düzgün olmayan şekillerin alanlarının nasıl bulunduğu hakkında bir resim aşağıda göstermiştir.
Mezopotamya'da, düzgün olmayan yüzeylerin
alanını hesaplama şekli
Eski Yunan matematikçilerinden Demokrit'te, gelişmiş bir geometri bilgisi görülmektedir. Ancak kaynaklar; Demokrit'in Eski Mısır matematiği ile temasta olduğunda hemfikirdir. Thales, ikizkenar üçgenin taban açılarının eşit olduğunu bildiği, ancak üçgenin iç açılarının 180 derece olduğu yolundaki bilgilerin Thales'e ait olmadığı anlaşılmıştır. Pisagor, geometri çalışmalarında, güney İtalya'da Kroton'da okullar açmış ve geometrinin gelişmesini sağlamıştır. Öklid, Elementler adlı geometri kitabını yazmakla ün yapmıştır. Bu eserdeki geometri bilgileri 2000 yıl kadar, fazla bir değişikliğe uğratılmadan, geometri derslerinde okutulmuştur. Bu eserin, bazı kısımlar günün ihtiyaçlarına cevap vermek için, 1700 yılından itibaren modernleştirilmiştir. Bugünkü geometride bilinen birçok bilgiler, Elementler'de vardır.
Kaynaklar; geometrinin önce Eski Mısır'da başladığını, Eski Yunanlılar'ın geometriyi Eski Mısır'dan öğrenmiş olduklarını belirtmektedir. Tarihçi Herodot (M.Ö. 485-425), geometrinin Eski Mısır'da başladığını ve arazi ölçüsü ihtiyacından doğmuş olduğunu belirtir. Aydın Sayılı : "Bunun gerçeğe uygun olduğunu, yani bölge bir menşeden başlayarak, geometrinin Eski Mısır'da bir ilim haline geldiğini kabul edebiliriz" der. Eski Yunanlılar'ın, matematikte ve özellikle geometri bakımından, Eski Mısırlılardan geniş şekilde yararlanmış oldukları anlaşılmıştır. Bu durumda, Eski Yunanlılara atfedilen geometri bilgileri hakkında şu görüşü belirtebiliriz;
Eski Yunanlılar, Eski Mısır yörelerini uzun yıllar dolaşmışlar. Bu yöreleri ilk dolaşan ve Eski Yunan'ın ilk bilgini (bilgesi) sayılan Thalestir (M.Ö. Miletes 640 ? -548 ?). Thales'ten sonra Pisagor'un ve Öklid'in bu yöreleri uzun yıllar dolaştıkları tarihi bir gerçektir. Bu bilginler, buralardan elde ettikleri geometri bilgilerini almışlardır. Bilahare de, geometriyi sistemli ispatlara dayanan müstakil bir bilim haline getirmişlerdir. Eski Yunanlılar'ın başarısı, geometriyi sistemleştirip, müstakil bir matematik dalı haline getirmiş olmalarıdır.
Matematiğin; aritmetik, cebir ve trigonometri dallarında kurucu denecek kadar eser ortaya koyan, 8. ile 16. Türk-İslam Dünyası alimleri; geometri dalında da, temel teşkil edecek, zamanı için orijinal ve kıymetini uzun yıllar koruyan eserler ortaya koymuşlardır.
İlk defa, cebiri geometriye tatbik etme fikri, ilmi metotlarla çalışan, bu devir matematikçilerinin eseri olmuştur. Bu durum, geometrinin çok kısa zamanda gelişmesini sağlamıştır.
Özellikle, Eski Yunan alimlerinin ortaya koydukları geometri konularını kapsayan eserler, uzun yıllar anlaşılamamıştır. Ne zaman ki; İslam alimlerinin bu eserlere yazdıkları yorumlamalar sonucu, Öklid ve çağdaşlarının eserleri ancak anlaşılabilirlik kazanmıştır. Bunlardan;
a) Harezmi ve Geometri
Matematikte yeni sayılabilecek bir dal olan, analitik geometri ile ilgili eserler, analitik geometriyi, 16. yüzyıl Fransız matematikçi Descartes'ın, 1637 yılında yazdığı La Geometri adlı eseri ile başlatırlar. Gerçekte, Harezmi tarafından 830 yılında Arapça olarak yazılan Cebri ve'l Mukabele adlı eserde, analitik geometriye ait ilk bilgiler ortaya konmuştur. Hatta, Ömer Hayyam'ın Cebir adlı eserinde de, analitik geometriye ait bilgilerin varlığı görülür. Analitik geometrinin Descartes'la ilgisini, şu şekilde belirtmek, gerçeğin tam ifadesi olur.
Descartes, kendisinden önceki yıllarda var olan analitik geometri bilgilerini toplayarak sistemleştirmiş ve kısmen de genişletmiştir.
Doğulu milletlerin din, dil, edebiyat, tarih ve kültürlerini inceleyen batılı bilgini Sigrid Hunke, analitik geometri konusunda aynen şunları yazar: ”Adedi çokluklarla (kemiyetlerle) geometrik çoklukların beraber yürütülmesi gerektiğine dair kesin fikir de ilk olarak, İslam ilim sahasında rastlanır…” Rönesansımızın üstatları, onun için, Yunanlılar değil, bilakis İslam Dünyası oldu.
Denebilir ki; cebrin geometriye tatbikatı demek olan, analitik geometriyi münferit bir geometri dalı haline getirme metotlarını ilk olarak Harezmi tarafından ortaya konmuştur.
b) Sabit bin Kurra ve Geometri
Trigonometrinin Avrupa'da duyulup dağılmasına etkisi olanların başında gelen Sabit bin Kurra, geometri konularındaki çalışmaları ile de adını zamanımıza kadar sürdürmüş olan ünlü matematikçilerimizden biridir. Konikler kitabı ile Apolonyos'a şerh yazdı. Huneyn bin İshak tarafından Öklid'in Elementler adlı eserine yazılan şerhi, ilaveler yaparak düzeltti. Menalaus, Apolonyos, Fisagor, Archimed, Öklid ve Theodosus'un eserlerini Arapçaya şerh etmekle, geometriye, zaman için orijinal olan, yeni bilgiler kazandırmıştır.
Georges Rivoire şunları yazar : " ...Cebirin geometriye uygulamasını, müslümanlara borçluyuz. Bu da, 900 yılında vefat etmiş Sabit bin Kurra'nın eseridir."
c) Ebu'l Vefa ve Geometri
Trigonometri çalışmaları dışında, düzgün çokyüzlüler konusuyla da uğraşmıştır. 7 ve 9 kenarlı düzgün çokgenlerin yaklaşık çizimlerine dair yeni bir geometrik yöntem ortaya koymuştur. Kısmen Hint modellerine dayalı olarak ortaya koyduğu geometrik çizimleri, geometri bakımından önem taşır. Ebu'l Vefa'nın çizim geometrisine ait ortaya koyduğu çalışmalarına dair bir fikir verebilmek için üç ayrı problemini örnek olarak belirtelim. Bunlar:
1) Pergelle daire içine, açıklığını bozmadan kare çizmek.
2) Verilen bir doğru parçasını, pergel yardımıyla eşit parçalara bölmek.
3) Verilen bir kare içine, eşkenar bir üçgen çizmek.
Matematik tarihi İncelendiğinde; Ünlü matematikçilerden, Thales, Öklid, Pisagor'un hazırladıkları eserler ve bu eserlerinde ortaya attıkları teoremler, Harezmi, Ömer Hayyam, Sabit bin Kurra, Beyruni, Nasirüddin Tusi'nin yazdıkları şerhler ve ortaya koydukları görüşler sonucu, geometri yeni boyutlar kazanmıştır.
Batı Avrupa’nın uyanmasından önceki yüzyıla kadar Yunan geometrisini tam olarak Müslümanlar anlamıştır. Yunan klasiklerini, geometrilerini, fen bilimlerini ve felsefelerini Arapça’ya çevirmişlerdir. Okullaşma olmadığı için gelecek gençlere bu çeviriler öğretilmemiş, bu kitaplar sadece neredeyse bir süs olarak sarayda kalmıştır. Yaptıkları hizmet, kaybolmaya yüz tutmuş Yunan klasiklerini, matematiklerini ve düşüncelerini Arapça çevirileriyle Avrupaya iletmişlerdir.
İ.Ö.1100 yıllarında yazıldığı sanılan Çinlilerin ünlü Nine Sections (Dokuz Bölüm) kitabında dik açılı üçgen ve ispatsız olarak Pisagor Teoremi vardır. Daha sonraki Çin geometrilerinde ölçümleri içeren çok zeki buluşlar vardır. Yine geometrik görünümle Pisagor teoreminin ispatı yapılmıştır. Bu geometrik şekille verilen kitabın İ.Ö. 2000 yıllarında yazıldığı sanılıyor.
Hintlilerin yerli geometrilerinde ise matematiksel ispat yoktur. Daha çok görsel ve deneysel ölçülere dayanan kuralları vardır. Bunlar da o kadar ileri bir geometri oluşturmaz. Bin yıllık bir süre boyunca kullanılan Yunan geometrisi ise daha çok görseldir. Eski Roma geometrisi daha çok kullanım alanlarına yöneliktir.
Avrupa’daki karanlık çağda biri Boethius’un (510) diğeri de Öklid’in (İ.Ö.300) kitapları vardır. Bunlardan sonra Gerbert’in (1000) ve Fibonacci’nin (1202) geometrileri sayılabilir ama bu geometriler İskenderiye geometrilerinden ileri bir düzeyde değildi. Öklid’in geometrisinin ardından yavaş yavaş geometri ürünleri ortaya çıkmaya başladı.17.yüzyılın başlarında analitik geometri ve 1639 yılında da Desargues’ın (1593-1662) izdüşüm geometrisi basıldı. Analitik geometri Descartes (1596-1650) ve Fermat (1601-1665) tarafından aynı dönemlerde yapıldı. Fermat yaptığı çalışmaları yayınlamadığı için analitik geometrinin bulunması onuru Descartes’e verildi.
Analitik geometri kısaca geometri ile cebir arasındaki ilişkidir diye söyleyebiliriz. Geometri ile cebir arasındaki ilişkiyi ilk kez Descartes çıkardığı için büyük bir matematikçi olmuştur. Descartes (1596-1650) her türlü düzlem geometri probleminini bir denklemler dizisine indirgedi. Bu dönemden sonra, sayısal koordinatlara dayanan bir gösterim biçimi kullanıldı ve şekilleri fonksiyonlar olarak ele aldı.Desargues’ın iz düşüm geometrisi matematikçilerin çok dikkatini çekmiş ve 19.yüzyılda çıkacak olan geometricilere coşku ve esin kaynağı olmuştur.
Analitik geometri bulunduktan sonra Apollonius’un (İ.Ö.262-190) konikleri sentetik ve analitik olarak gözden geçirilmiştir.Sentetik geometrinin tüm problemleri bir kezde analitik olarak kanıtlanmıştır.
Eukleidesçi olmayan geometrilerin geliştirilmesi, bu bilim dalında yeni çeşitlenmelere yol açtı. Bir noktadan bir doğruya çizilebilecek paralellerin sayısına (Eukleidesçi geometride yalnızca bir olmasına karşılık, Eukleidesçi olmayanlarda sıfır veya sonsuz sayıda) dayanan bu geometriler, uzaklık fikrini tartışma konusu yaptı. Ortak yargının tersine, iki nokta arasındaki uzaklık evrensel bir veri değildir ve söz konusu noktaların bulunduğu uzayın özelliklerine bağlıdır.
Erlangen Programı (1872) olarak adlandırılan ünlü çalışmasında Felix Klein, bu çeşit yaklaşımları sınıflandırmasını önerdi. Her geometri türüne, değişmezliğini benimsediği kavramlarla nitelenen bir dönüşümler grubu eşlik etti. Modern cebirden doğan bu grup kavramı, bu dönemden sonra geometride büyük bir önem kazandı. XVII. yy.'dan bu yana geometriyi, biri çeşitlendirici, diğeri birleştirici olan, çelişkili ve tamamlayıcı iki eğilim biçimlendirdi. Geometri, kavramsal katkılar ve matematiğin diğer alanlarında geliştirilen yöntemlerle zenginleşerek, önerilen bağıntılara bağlı, yeni araştırma alanları oluşturdu.
Geometrinin kilometre taşları şöyle sıralanabilir:
İsa’dan önce Thales, Euclides, Apollonios, Archimedes ilk akla gelenlerdir. Daha sonra Descartes (1637), Desarques (1639), Lazer Carnot(1803), Jean Victor Poncelet (1822), Janos Bolyai (1823), Michei Chasles (1837), N.Lobaçevsky (1840), Bernard Riemann (1867), C.Felix Klein (1872), DavidHilbert (1899) ve Albert Einstein (1921)olarak sayılabilir.
Pisagor Döneminde Pisagor Tarikatı Varmış . Bunlar Doğadaki Herşeyin Bir Rasyonel Sayıyla İfade Edilebiliceklerini İddaa Ediyorlarmış . Birgün Pisagor Pisagor Teoremini Bulmuş . A2 + C2 = B2 Demiş . Pisagorun Bir Öğrencisi Gelmiş Demiş ki ;
Sponsorlu Baglantilar
alıntı
aşağıdada istediğiniz gibi uzun olarak geometri tarihçesi.. inceleyiniz..
Geometrinin Tarihçesi Bilim tarihi içinde matematiksel gelişmelerin yeri ve önemi çok büyüktür. Matematiğin orjinini oluşturan iki temel alan vardır: Aritmetik ve Geometri.
Geometri uzayın ve uzayda tasarlanabilen biçimlerin, kurallara uyularak incelenmesini konu alan matematik dalıdır. Etimolojik olarak "geometri" kelimesi, dünya'nın ölçümü anlamına gelir. Geometri çok eski çağlardan beri vardır. Ancak geometri ismi, bu ilmin ilk sistematik hale gelmeye başladığı Eski Yunanlılardan bu yana kullanılmaya başlanmıştır. Bu bilim dalı başlangıçta, düzlemdeki ve uzaydaki şekillerin incelenmesini konu edindi. Söz konusu şekiller somut nesnelerden türemelerine rağmen, geometri, deneysel yöntemlerin kullanımını çok erken terk etti. Bunun tersine, şekilleri gerçek nesnelerin ideal biçimine indirgemeye çalıştı (parçaları olmayan nokta; bütün noktalarında kendine benzeyen doğru). Öte yandan geometri, gözlemi de ölçmeyi de kullanmayan postulatlar (koyutlar) ve sonuçlarla işleyen bir kanıtlama biçimine başvurdu.
Yüzölçümü hesaplamak istenen bir tarlanın çizgisel taslağından tutun da gök cisimlerinin yörüngelerinin saptanmasına, haritalara, planlara, coğrafyada kullanılan ölçeklere, makine yapımına, mimarlığa varıncaya kadar, geometri bilgisinin mutlaka gerekli olduğu alan pek çok ve geniştir. Bugünde kullandığımız mühendis kelimesi Arapça’da “hendese bilen” anlamına gelir ki hendese geometrinin bir diğer ismidir.
Geometrinin “yer ölçme” (geo: yer, metr: ölçüm) anlamı aslında tarihin derinliklerinde geometrinin taşıdığı anlamdır. İnsanoğlu toprak ile karşılaştığında ondan yararlanmaya, ona sahip olmaya başlamıştır. İlk medeniyetin beşiği sayılan Nil Vadisi’nde Temmuz ve Ağustos aylarında Nil nehri taşar ve en dar yeri 7 km, en geniş yeri 40 km olan yatağını alüvyonlu topraklarla örter. Böylece arazi üzerindeki hudutları bir bakıma siler. Ardından araziyi işlemek isteyenler arasında “burası senindi, burası benimdi” kavgaları olurdu. Bu probleme kalıcı bir çözüm bulmak hayli zor ve zaman alıcı olmuştur. Nihayet gökyüzündeki yıldızların oluşturduğu üçgen, dörtgen, ... gibi şekiller arazi üzerine çizildi. Ve bunların sahipleri tespit edilerek karışıklıklara son verildi.. Böylece ilk geometri konuları da ele alınmış oldu. Bu gayretler devam ettikçe geometri gelişmiştir.
İlk geometrilerin tümü, kendi doğası nedeniyle sezgiseldir. Bunlar daha çok ilk insanların çevresinde görülen doğal şekillerdir. Bu geometriler daha çok görsel türdedir. İkinci olarak şekillerin ölçülmesi aşaması gelir.
Eski Mısır'da görülen geometri bilgileri, yüzey ve hacim hesapları olarak karşımıza çıkmaktadır. Mısırlılar, kare ve dikdörtgen alanlarını, doğru bir şekilde hesaplayabiliyorlardı. Düzgün olmayan bir yüzeyin planını ise, dörtgenleştirme yoluyla elde ediyorlardı. Üçgen alanı bilgisinden hareket ederek de, yamuğun alanını elde ediyorlardı.
Dörtgenlerin ve üçgenlerin ölçülmesi ilk kez Mısır’da Ahmes’in (İ.Ö.1550) papirüsünde görülür. Bu papirüs İ.Ö.1580 tarihinden önce yazılmıştır. b tabanlı ve h yükseklikli ikiz kenar üçgenin alanının bh/2 olduğu verilmiştir. Yine aynı papirüste d çaplı bir dairenin alanının (d-d/9)2 yazımına eşdeğer olduğu yazılmıştır. Bu yazımlara göre pi sayısı yaklaşık olarak 3.1605 dolaylarındadır. Bu formül geometrik şekilden yaklaşık olarak elde edilmiştir.
Mısırlılar'ın; üç boyutlu cisimlerden; silindir, koni, piramit, dikdörtgen prizma ve kesik prizma hacimlerini de bildikleri anlaşılmaktadır. Kesik piramidin hacminin hesaplanması, zamanın geometrisi için son derece önem taşımaktadır. Ord.Prof.Dr.Aydın Sayılı; Mısırlılarda ve Mezopotamyalılarda Matematik, Astronomi ve Tıp adlı eserinde konu ile ilgili geniş bilgi verdikten sonra şunları yazar: "Mısırlılar'ın, aritmetiklerinde olduğu gibi geometri problemlerinin çözümünde de, tamamıyla somut özel hallerin ele alınmasından ileri gidilmiyor. Karşılaşılan bütün örneklerde ortak bir vasıf Mısır geometrisinde genel formül kavramının mevcut olmayışıdır. Zihinde bir nevi genel formül fikri ve belli genellemeler vardı. Açı geometrisi mevcut değildi. Bunun yanında Doğru geometrisi gelişmiş durumdaydı." Burada doğru geometrisi ile ölçü için; sadece doğruları kullanan ve açı kavramına başvurmayan bir geometri kastedilmektedir. Alan ve hacim hesapları, doğruların yardımıyla yapılmaktadır. En, boy, taban, dikme, köşegen, çap ve çevre, hem ölçülebilen, hem de ölçüde aracı rolünü kullanıyordu. Bugünkü ifadeyle; 45 derecenin, bazı trigonometrik özelliklerini de bildikleri anlaşılmaktadır.
Burada akla şöyle bir soru gelmektedir; Mısırlılar, ilkel geometri bilgisi diyebileceğimiz, ama bugünkü geometrinin temel bilgilerini, hangi ihtiyaçları sonucu ortaya koymuşlardır?
Başta da belirttiğimiz gibi Nil Nehrinin belli aralıklarla taşması sonucu silinen arazi hudutlarının tekrar belirlenmesi amacıyla bir ihtiyaç olarak doğmuştur. Mısır mezar lahitlerinin, piramitlerin, tahta işlerinin estetik bakımdan üstünlük sağlaması, hem çalışmaların ihtiyacından doğmuş ve hem de zaman için var olan ölçü tekniği ile basit de olsa bu ölçülerin hesaplama tekniğinin kısmen ileri derecede olması geometrinin temellerinin oluşmasında katkı sağlamıştır.
Zamanımıza kadar ulaşmış tabletlerin değerlendirilmesi sonucu Mezopotamya matematiği hakkında bilgiler elde edilmektedir. Bu tabletler bilim tarihinde; Susa, Vatikan 8512, Tell Halman, Plimpor 322, British Museum 85114 ve Elam tabletleri şeklinde adlandırılmıştır. Bugün, Thales Teoremi olarak bilinen teoremin varlığı, Thales'ten (batı felsefesinin ilk filozofu) 1700 yıl ve Öklid'ten 2000 yıl kadar önce biliniyordu. Aydın Sayılı; adı geçen eserinde, Susa tabletlerine dayanarak Thales Teoremlerinin nasıl ortaya çıktığını belirtir. Bu teoremlerin, Öklid tarafından bilindiğini ve Elementler adlı eserinin, 6. ve 8. teoremler olarak açıklandığını yazar. Kaynaklardan şu sonucu çıkarmaktayız. Bugünkü klasik geometri veya Eski Yunan geometrisinin temsilcileri olarak görülen, Thales, Pisagor ve Öklid'e dayalı geometri bilgilerinin temelinde Mezopotamya matematiği bulunmaktadır. Başka bir ifade ile Mezopotamyalılar tarafından, bu geometri bilgileri, eski Yunan matematikçilerinden, çok önceki yıllarda bilinmekte olduğu anlaşılmaktadır.
Thales’e atfolunan bilgiler, aslında, Mezopotamya geometrisine dayanmaktadır. O bilgiler şunlardır:
1. Thales Teoremi:
a. Benzer dik üçgenlerde (veya iki üçgenin açıları eşitse) kenar uzunlukları oranları eşittir (Öklid, Geometrinin Unsurları, VI, 4)
b. Bir dik üçgende, dik açının tepe noktasından hipotenüse indirilen dikmenin iki tarafında kalan iki üçgen birbirine ve asıl üçgene benzer üçgenlerdir (Öklid, Geometrinin Unsurları, VI, 8).
2. Çapı gören çevre açısı bir dik açıdır. Çap, çemberi iki eşit kısma böler.
3. Bir ikizkenar üçgende, taban açılarının eğimleri eşittir.
4. Thales, tıpkı Mezopotamya’da olduğu gibi, açı yerine, ancak dik açıya dayanarak, eğimleri göz önünde bulundurmuştur; ve, ‘eşit açılar’a ‘benzer açılar’ adını vermiştir; dairede ise çapı gören dik açıyı söz konusu etmiştir; ikizkenar üçgende ‘taban açılarının eşitliği’ yerine ‘taban açılarının eğimlerinin eşitliğini düşünmüştür. Ters açıların eşit olduğunu fark etmiştir.
5. Birer kenarı ile ikişer açıları eşit olan üçgenler eşittir.
Kaynaklar geometri konusunda şu bilgileri de vermektedir. Çemberi de, ilk önce 360 dereceye Mezopotamyalılar'ın ayırdığı, bu geleneğin Mezopotamya menşeli olup Yunanlılara, Mezopotamyalılar'dan geçtiği bilinmektedir. Kesik piramidin hacminin ortaya konması ve ispatlanması geometride önemli bir yer tutar. Mezopotamyalılar, kesik piramit hacmine ek olarak, piramit hacim formülünü de bilmiş olmaları gerekiyor.
Babilliler, bugün Eski Yunandan beri Pisagor Bağıntısı diye adlandırılan teoremi biliyorlardı. M.Ö. 18. yüzyıla (Birinci Babil İmparatorluğu Devri) ait tablette, bugün Pisagor Bağıntısı dediğimiz : c2 = a2 + b2 formülüyle bağlı; a, b, c gibi sayılar üç sütun üzerine sıralanmış; birinci sütuna c ikinci sütuna a, üçüncü sütuna da, b gibi sayılar kaydedilmiş, c lere karşılık olan sayılar belirtilmemiş. Pisagor'dan on iki yüzyıl önce, bu gibi sayılara ait özellikleri bilen Mezopotamyalılar'ın soyut aritmetik problemlerine dayanarak, sayılar teorisi esasları üzerinde zihni bir merak aşamasına varmış oldukları anlaşılmaktadır.
Mezopotamya geometrisi hakkında bir fikir vermek üzere, düzgün olmayan şekillerin alanlarının nasıl bulunduğu hakkında bir resim aşağıda göstermiştir.

Mezopotamya'da, düzgün olmayan yüzeylerin
alanını hesaplama şekli
Eski Yunan matematikçilerinden Demokrit'te, gelişmiş bir geometri bilgisi görülmektedir. Ancak kaynaklar; Demokrit'in Eski Mısır matematiği ile temasta olduğunda hemfikirdir. Thales, ikizkenar üçgenin taban açılarının eşit olduğunu bildiği, ancak üçgenin iç açılarının 180 derece olduğu yolundaki bilgilerin Thales'e ait olmadığı anlaşılmıştır. Pisagor, geometri çalışmalarında, güney İtalya'da Kroton'da okullar açmış ve geometrinin gelişmesini sağlamıştır. Öklid, Elementler adlı geometri kitabını yazmakla ün yapmıştır. Bu eserdeki geometri bilgileri 2000 yıl kadar, fazla bir değişikliğe uğratılmadan, geometri derslerinde okutulmuştur. Bu eserin, bazı kısımlar günün ihtiyaçlarına cevap vermek için, 1700 yılından itibaren modernleştirilmiştir. Bugünkü geometride bilinen birçok bilgiler, Elementler'de vardır.
Kaynaklar; geometrinin önce Eski Mısır'da başladığını, Eski Yunanlılar'ın geometriyi Eski Mısır'dan öğrenmiş olduklarını belirtmektedir. Tarihçi Herodot (M.Ö. 485-425), geometrinin Eski Mısır'da başladığını ve arazi ölçüsü ihtiyacından doğmuş olduğunu belirtir. Aydın Sayılı : "Bunun gerçeğe uygun olduğunu, yani bölge bir menşeden başlayarak, geometrinin Eski Mısır'da bir ilim haline geldiğini kabul edebiliriz" der. Eski Yunanlılar'ın, matematikte ve özellikle geometri bakımından, Eski Mısırlılardan geniş şekilde yararlanmış oldukları anlaşılmıştır. Bu durumda, Eski Yunanlılara atfedilen geometri bilgileri hakkında şu görüşü belirtebiliriz;
Eski Yunanlılar, Eski Mısır yörelerini uzun yıllar dolaşmışlar. Bu yöreleri ilk dolaşan ve Eski Yunan'ın ilk bilgini (bilgesi) sayılan Thalestir (M.Ö. Miletes 640 ? -548 ?). Thales'ten sonra Pisagor'un ve Öklid'in bu yöreleri uzun yıllar dolaştıkları tarihi bir gerçektir. Bu bilginler, buralardan elde ettikleri geometri bilgilerini almışlardır. Bilahare de, geometriyi sistemli ispatlara dayanan müstakil bir bilim haline getirmişlerdir. Eski Yunanlılar'ın başarısı, geometriyi sistemleştirip, müstakil bir matematik dalı haline getirmiş olmalarıdır.
Matematiğin; aritmetik, cebir ve trigonometri dallarında kurucu denecek kadar eser ortaya koyan, 8. ile 16. Türk-İslam Dünyası alimleri; geometri dalında da, temel teşkil edecek, zamanı için orijinal ve kıymetini uzun yıllar koruyan eserler ortaya koymuşlardır.
İlk defa, cebiri geometriye tatbik etme fikri, ilmi metotlarla çalışan, bu devir matematikçilerinin eseri olmuştur. Bu durum, geometrinin çok kısa zamanda gelişmesini sağlamıştır.
Özellikle, Eski Yunan alimlerinin ortaya koydukları geometri konularını kapsayan eserler, uzun yıllar anlaşılamamıştır. Ne zaman ki; İslam alimlerinin bu eserlere yazdıkları yorumlamalar sonucu, Öklid ve çağdaşlarının eserleri ancak anlaşılabilirlik kazanmıştır. Bunlardan;
a) Harezmi ve Geometri
Matematikte yeni sayılabilecek bir dal olan, analitik geometri ile ilgili eserler, analitik geometriyi, 16. yüzyıl Fransız matematikçi Descartes'ın, 1637 yılında yazdığı La Geometri adlı eseri ile başlatırlar. Gerçekte, Harezmi tarafından 830 yılında Arapça olarak yazılan Cebri ve'l Mukabele adlı eserde, analitik geometriye ait ilk bilgiler ortaya konmuştur. Hatta, Ömer Hayyam'ın Cebir adlı eserinde de, analitik geometriye ait bilgilerin varlığı görülür. Analitik geometrinin Descartes'la ilgisini, şu şekilde belirtmek, gerçeğin tam ifadesi olur.
Descartes, kendisinden önceki yıllarda var olan analitik geometri bilgilerini toplayarak sistemleştirmiş ve kısmen de genişletmiştir.
Doğulu milletlerin din, dil, edebiyat, tarih ve kültürlerini inceleyen batılı bilgini Sigrid Hunke, analitik geometri konusunda aynen şunları yazar: ”Adedi çokluklarla (kemiyetlerle) geometrik çoklukların beraber yürütülmesi gerektiğine dair kesin fikir de ilk olarak, İslam ilim sahasında rastlanır…” Rönesansımızın üstatları, onun için, Yunanlılar değil, bilakis İslam Dünyası oldu.
Denebilir ki; cebrin geometriye tatbikatı demek olan, analitik geometriyi münferit bir geometri dalı haline getirme metotlarını ilk olarak Harezmi tarafından ortaya konmuştur.
b) Sabit bin Kurra ve Geometri
Trigonometrinin Avrupa'da duyulup dağılmasına etkisi olanların başında gelen Sabit bin Kurra, geometri konularındaki çalışmaları ile de adını zamanımıza kadar sürdürmüş olan ünlü matematikçilerimizden biridir. Konikler kitabı ile Apolonyos'a şerh yazdı. Huneyn bin İshak tarafından Öklid'in Elementler adlı eserine yazılan şerhi, ilaveler yaparak düzeltti. Menalaus, Apolonyos, Fisagor, Archimed, Öklid ve Theodosus'un eserlerini Arapçaya şerh etmekle, geometriye, zaman için orijinal olan, yeni bilgiler kazandırmıştır.
Georges Rivoire şunları yazar : " ...Cebirin geometriye uygulamasını, müslümanlara borçluyuz. Bu da, 900 yılında vefat etmiş Sabit bin Kurra'nın eseridir."
c) Ebu'l Vefa ve Geometri
Trigonometri çalışmaları dışında, düzgün çokyüzlüler konusuyla da uğraşmıştır. 7 ve 9 kenarlı düzgün çokgenlerin yaklaşık çizimlerine dair yeni bir geometrik yöntem ortaya koymuştur. Kısmen Hint modellerine dayalı olarak ortaya koyduğu geometrik çizimleri, geometri bakımından önem taşır. Ebu'l Vefa'nın çizim geometrisine ait ortaya koyduğu çalışmalarına dair bir fikir verebilmek için üç ayrı problemini örnek olarak belirtelim. Bunlar:
1) Pergelle daire içine, açıklığını bozmadan kare çizmek.
2) Verilen bir doğru parçasını, pergel yardımıyla eşit parçalara bölmek.
3) Verilen bir kare içine, eşkenar bir üçgen çizmek.
Matematik tarihi İncelendiğinde; Ünlü matematikçilerden, Thales, Öklid, Pisagor'un hazırladıkları eserler ve bu eserlerinde ortaya attıkları teoremler, Harezmi, Ömer Hayyam, Sabit bin Kurra, Beyruni, Nasirüddin Tusi'nin yazdıkları şerhler ve ortaya koydukları görüşler sonucu, geometri yeni boyutlar kazanmıştır.
Batı Avrupa’nın uyanmasından önceki yüzyıla kadar Yunan geometrisini tam olarak Müslümanlar anlamıştır. Yunan klasiklerini, geometrilerini, fen bilimlerini ve felsefelerini Arapça’ya çevirmişlerdir. Okullaşma olmadığı için gelecek gençlere bu çeviriler öğretilmemiş, bu kitaplar sadece neredeyse bir süs olarak sarayda kalmıştır. Yaptıkları hizmet, kaybolmaya yüz tutmuş Yunan klasiklerini, matematiklerini ve düşüncelerini Arapça çevirileriyle Avrupaya iletmişlerdir.
İ.Ö.1100 yıllarında yazıldığı sanılan Çinlilerin ünlü Nine Sections (Dokuz Bölüm) kitabında dik açılı üçgen ve ispatsız olarak Pisagor Teoremi vardır. Daha sonraki Çin geometrilerinde ölçümleri içeren çok zeki buluşlar vardır. Yine geometrik görünümle Pisagor teoreminin ispatı yapılmıştır. Bu geometrik şekille verilen kitabın İ.Ö. 2000 yıllarında yazıldığı sanılıyor.
Hintlilerin yerli geometrilerinde ise matematiksel ispat yoktur. Daha çok görsel ve deneysel ölçülere dayanan kuralları vardır. Bunlar da o kadar ileri bir geometri oluşturmaz. Bin yıllık bir süre boyunca kullanılan Yunan geometrisi ise daha çok görseldir. Eski Roma geometrisi daha çok kullanım alanlarına yöneliktir.
Avrupa’daki karanlık çağda biri Boethius’un (510) diğeri de Öklid’in (İ.Ö.300) kitapları vardır. Bunlardan sonra Gerbert’in (1000) ve Fibonacci’nin (1202) geometrileri sayılabilir ama bu geometriler İskenderiye geometrilerinden ileri bir düzeyde değildi. Öklid’in geometrisinin ardından yavaş yavaş geometri ürünleri ortaya çıkmaya başladı.17.yüzyılın başlarında analitik geometri ve 1639 yılında da Desargues’ın (1593-1662) izdüşüm geometrisi basıldı. Analitik geometri Descartes (1596-1650) ve Fermat (1601-1665) tarafından aynı dönemlerde yapıldı. Fermat yaptığı çalışmaları yayınlamadığı için analitik geometrinin bulunması onuru Descartes’e verildi.
Analitik geometri kısaca geometri ile cebir arasındaki ilişkidir diye söyleyebiliriz. Geometri ile cebir arasındaki ilişkiyi ilk kez Descartes çıkardığı için büyük bir matematikçi olmuştur. Descartes (1596-1650) her türlü düzlem geometri probleminini bir denklemler dizisine indirgedi. Bu dönemden sonra, sayısal koordinatlara dayanan bir gösterim biçimi kullanıldı ve şekilleri fonksiyonlar olarak ele aldı.Desargues’ın iz düşüm geometrisi matematikçilerin çok dikkatini çekmiş ve 19.yüzyılda çıkacak olan geometricilere coşku ve esin kaynağı olmuştur.
Analitik geometri bulunduktan sonra Apollonius’un (İ.Ö.262-190) konikleri sentetik ve analitik olarak gözden geçirilmiştir.Sentetik geometrinin tüm problemleri bir kezde analitik olarak kanıtlanmıştır.
Eukleidesçi olmayan geometrilerin geliştirilmesi, bu bilim dalında yeni çeşitlenmelere yol açtı. Bir noktadan bir doğruya çizilebilecek paralellerin sayısına (Eukleidesçi geometride yalnızca bir olmasına karşılık, Eukleidesçi olmayanlarda sıfır veya sonsuz sayıda) dayanan bu geometriler, uzaklık fikrini tartışma konusu yaptı. Ortak yargının tersine, iki nokta arasındaki uzaklık evrensel bir veri değildir ve söz konusu noktaların bulunduğu uzayın özelliklerine bağlıdır.
Erlangen Programı (1872) olarak adlandırılan ünlü çalışmasında Felix Klein, bu çeşit yaklaşımları sınıflandırmasını önerdi. Her geometri türüne, değişmezliğini benimsediği kavramlarla nitelenen bir dönüşümler grubu eşlik etti. Modern cebirden doğan bu grup kavramı, bu dönemden sonra geometride büyük bir önem kazandı. XVII. yy.'dan bu yana geometriyi, biri çeşitlendirici, diğeri birleştirici olan, çelişkili ve tamamlayıcı iki eğilim biçimlendirdi. Geometri, kavramsal katkılar ve matematiğin diğer alanlarında geliştirilen yöntemlerle zenginleşerek, önerilen bağıntılara bağlı, yeni araştırma alanları oluşturdu.
Geometrinin kilometre taşları şöyle sıralanabilir:
İsa’dan önce Thales, Euclides, Apollonios, Archimedes ilk akla gelenlerdir. Daha sonra Descartes (1637), Desarques (1639), Lazer Carnot(1803), Jean Victor Poncelet (1822), Janos Bolyai (1823), Michei Chasles (1837), N.Lobaçevsky (1840), Bernard Riemann (1867), C.Felix Klein (1872), DavidHilbert (1899) ve Albert Einstein (1921)olarak sayılabilir.